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DEHN FILLING OF CUSPED HYPERBOLIC
3-MANIFOLDS WITH GEODESIC BOUNDARY
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Abstract
We define for each g � 2 and k � 0 a set Mg,k of orientable hyperbolic
3-manifolds with k toric cusps and a connected totally geodesic boundary of
genus g. Manifolds in Mg,k have Matveev complexity g + k and Heegaard
genus g+1, and their homology, volume, and Turaev-Viro invariants depend
only on g and k. In addition, they do not contain closed essential surfaces.
The cardinality of Mg,k for a fixed k has growth type gg .

We completely describe the non-hyperbolic Dehn fillings of each M in
Mg,k, showing that, on any cusp of any hyperbolic manifold obtained by
partially filling M , there are precisely 6 non-hyperbolic Dehn fillings: three
contain essential discs, and the other three contain essential annuli. This
gives an infinite class of large hyperbolic manifolds (in the sense of Wu)
with ∂-reducible and annular Dehn fillings having distance 2, and allows us
to prove that the corresponding upper bound found by Wu is sharp. If M
has one cusp only, the three ∂-reducible fillings are handlebodies.

1. Definition and statements

In this paper we introduce certain classes Mg,k of compact 3-mani-
folds, we determine many topological and geometric invariants of the ele-
ments of Mg,k, and we analyze their Dehn fillings, answering in particu-
lar a question raised by Wu [22] on the distance between non-hyperbolic
fillings of a large 3-manifold. We also show that #Mg,k grows very fast
as g goes to infinity.

Definition of Mg,k All the manifolds considered in this paper will be
viewed up to homeomorphism, and will be connected and orientable by
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default. Let ∆ denote the standard tetrahedron, and let ∆̇ be ∆ with
its vertices removed. An ideal triangulation of a compact 3-manifold
M with boundary is a realization of the interior of M as a gluing of a
finite number of copies of ∆̇, induced by a simplicial face-pairing of the
corresponding ∆’s. Let Σg be the closed orientable surface of genus g.
The following result is proved in Section 2 and motivates our definition
of Mg,k.

Proposition 1.1. An ideal triangulation of a manifold whose
boundary is the union of Σg and k tori contains at least g+k tetrahedra.

We then define Mg,k for all g � 2, k � 0 as follows:

Mg,k =
{

compact orientable manifolds M having an ideal

triangulation with g + k tetrahedra, and

∂M = Σg �
(

k�
i=1

Ti

)
with Ti

∼= Σ1

}
.

The sets Mg = Mg,0 were studied in [3].

Geometric and topological invariants We now describe the main
properties of the manifolds in Mg,k, starting from a quick general review
of the invariants that we can compute.

We first recall that a surface in a compact 3-manifold M is essential
if it is properly embedded, connected, and either a reducing sphere, or
a boundary-reducing disc, or an incompressible and ∂-incompressible
surface not parallel to the boundary.

We say that a compact 3-manifold M is hyperbolic if, after removing
the boundary tori, we get a complete hyperbolic 3-manifold with finite
volume and geodesic boundary. If ∂M �= ∅, Thurston’s geometriza-
tion theorem implies that hyperbolicity is equivalent to the condition
that M does not contain any essential surface with nonnegative Euler
characteristic. We recall that Kojima has proved in [12] that every hy-
perbolic manifold with nonempty geodesic boundary admits a canonical
decomposition into geometric polyhedra.

For any compact 3-manifold M , an N-valued invariant c(M) was
defined by Matveev in [14] and called the complexity of M . Matveev also
proved that, when M is hyperbolic, c(M) equals the minimal number
of tetrahedra in an ideal triangulation of M .

If M is a compact 3-manifold with ∂M = ∂0M�∂1M , one can define
the Heegaard genus of (M,∂0M,∂1M) as the minimal genus of a surface
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that splits M as C0 � C1, where Ci is obtained by attaching 1-handles
on one side of a collar of ∂iM .

For any compact 3-manifold M and integer r � 2, after fixing in
C a primitive 2r-th root of unity, a real-valued invariant TVr(M) for
compact 3-manifolds with boundary was defined by Turaev and Viro
in [18].

The following theorem will be proved in Sections 2 and 3.

Theorem 1.2. Let M ∈ Mg,k. The following hold:

1. M is hyperbolic, and its volume depends only on g and k.

2. M has a unique ideal triangulation with g + k tetrahedra, which
gives the canonical Kojima decomposition of M .

3. Every essential surface in M has nonempty boundary which inter-
sects Σg.

4. M has complexity g + k.

5. The Heegaard genus of
(
M,Σg,

k�
i=1

Ti

)
is g + 1.

6. H1(M ; Z) = Zg+k.

7. The Turaev-Viro invariant TVr(M) of M depends only on r, g,
and k.

Remark 1.3. It follows from [16] that Mg,0 is precisely the set
of hyperbolic 3-manifolds M having minimal volume among those with
∂M = Σg (see [3]). So Mg,k is a natural candidate for the set of

minimal-volume hyperbolic manifolds M with ∂M = Σg �
(

k�
i=1

Ti

)
.

Growth of Mg,k We begin with the following fact, established in
Section 4:

Proposition 1.4. Mg,k is nonempty precisely for g > k or g = k
and g even.

We have computed the number of elements of Mg,k for some small
g and k with the aid of a computer. Our results are summarized in the
next table, where we also take from [4] the number of all hyperbolic
manifolds with nonempty geodesic boundary having a certain complex-
ity c:
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Mc,0 Mc−1,1 Mc−2,2 All hyperbolic manifolds

c = 2 8 ∅ ∅ 8

c = 3 74 1 ∅ 151

c = 4 2340 12 1 5033

c = 5 97568 416 1 ?

c = 6 ? 17900 51 ?

We now say that a numerical sequence (an)∞n=1 has growth type nn if
there exist constants C > c > 0 such that nc·n < an < nC·n for n � 0.
In Section 4 we will prove the following:

Theorem 1.5. For any fixed k the sequence
(
#Mg,k

)∞
g=2

has growth
type gg.

This result and an easy upper bound also established in Section 4
readily imply the following:

Corollary 1.6. The number of hyperbolic 3-manifolds of complexity
c has growth type cc.

Dehn fillings Recall that a slope in a torus T is an isotopy class
of simple closed essential curves, and that, after choosing a Z-basis of
H1(T ; Z), a slope is represented by a number in Q ∪ {∞}. If M is a
manifold with k boundary tori, and α1, . . . , αh are slopes in some h � k
of these tori, we denote by M(α1, . . . , αh) the result of Dehn-filling these
h tori along α1, . . . , αh.

For g � 2 we now denote by Hg the handlebody of genus g and for
0 � k � g we introduce another manifold Hg,k. We do this noting that
Hg can be viewed as the ∂-connected sum of g solid tori, and defining
Hg,k to be Hg minus open tubes around the cores of k of these solid tori.
So Hg,k is obtained from Hg by drilling out k tunnels along k different
1-handles. Of course Hg,k is well-defined and Hg,0 = Hg. Moreover,
Hg,k is not hyperbolic because it is ∂-reducible.

The next result is proved in Section 3.

Theorem 1.7. Let M ∈ Mg,k, with ∂M = Σg �
(

k�
i=1

Ti

)
. There

exists a Z-basis of H1

(
k�

i=1
Ti; Z

)
such that N = M(α1, . . . , αh) is as

follows:
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• If αi ∈ {0, 1,∞} for some i then N = Hg,k−h, so it is not hyper-
bolic.

• If αi ∈ {−1, 1/2, 2} for some i then N contains a Möbius strip or
non-separating annulus R with ∂R ⊂ Σg, and cutting N along R
one gets Hg,k−h; also in this case N is not hyperbolic.

• If αi �∈ {−1, 0, 1/2, 1, 2,∞} for all i then N is hyperbolic and,
denoting by Tj1 , . . . , Tjk−h

the non-filled tori, the Heegaard genus
of (

N,Σg, Tj1 � · · · � Tjk−h

)
is g + 1.

• If αi ∈ {−2,−1/2, 1/3, 2/3, 3/2, 3} for all i then N belongs to
Mg,k−h.

Moreover every essential surface in N has nonempty boundary inter-
secting Σg.

If α, α′ are two slopes on a torus, we denote now by ∆(α, α′) their
distance, that is their geometric intersection number. We recall that,
once a homology basis is fixed, the set Q∪{∞} of slopes can be viewed
as a subset of ∂H2, where H2 is the half-space model of hyperbolic plane.
Connecting the pairs of slopes α, α′ such that ∆(α, α′) = 1 one gets a
tessellation of H2 by ideal triangles. A combinatorial (but geometrically
incorrect) picture of this tessellation is shown in Figure 1 in the disc
model of H2.

−2

−1

−1/2

0

1/3
1/2

2/3

3/2

2

3

1

∞

Figure 1: The Farey tessellation of H2.

The theorem just stated gives the following:
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Corollary 1.8. For any g � 2 there exist infinitely many hy-
perbolic manifolds N with ∂N = Σg � Σ1 and with 6 slopes α1, . . . , α6

on Σ1, such that N(αi) = Hg for i ∈ {1, 2, 3} and N(αi) is annu-
lar for i ∈ {4, 5, 6}. We have ∆(αi, αi+3) = 2 for i = {1, 2, 3}, and
∆(αj , αj′) = 3 for j, j′ ∈ {4, 5, 6}, j �= j′.

Proof. Take N = M(α) where M ∈ Mg,2 and α varies in Q \
{−1, 0, 1/2, 1, 2}. This gives infinitely many manifolds because the vol-
ume grows to vol(M) as ∆(α, 0) tends to infinity. Now let (α1, . . . , α6) =
(0, 1,∞, 2,−1, 1/2), so N(αi) = Hg for i ∈ {1, 2, 3}. For i ∈ {4, 5, 6}
the manifold N(αi) is not hyperbolic, so by Thurston’s hyperbolization
theorem and the last assertion of Theorem 1.7 it contains either an es-
sential disc or an essential annulus. Since a hyperbolic manifold admits
at most 3 boundary-reducible fillings [21], we conclude that N(αi) is
annular for i ∈ {4, 5, 6}. q.e.d.

This corollary leads to infinitely many examples of knots in a han-
dlebody Hg having non-meridinal surgeries that give back Hg (more
precisely, two such surgeries) for all g � 2. For g = 1, i.e. for the
solid torus H1, knots in H1 with non-meridinal surgeries giving H1 were
shown to be 1-bridge [7] and then classified by Gabai [8] and Berge [2].
(See Section 3 for a definition of 1-bridge knot). In particular, there
is a unique knot in H1 with two non-meridinal surgeries giving H1. A
knot in H2 with one non-meridinal surgery giving H2 was also shown
in [8], and in the same paper other examples in Hg for any g were at-
tributed to Berge, together with the following question: if K is a knot in
a ∂-reducible manifold M with ∂-irreducible exterior and a ∂-reducible
non-meridinal surgery, is K boundary-parallel or 1-bridge in M? The
answer is “yes” for all the hyperbolic examples one can construct from
Mg,k, as we will show in Section 3:

Proposition 1.9. Every knot in Hg whose complement is a hyper-
bolic manifold obtained from k− 1 Dehn fillings on a manifold in Mg,k

is a 1-bridge knot.

Let M be a hyperbolic 3-manifold, and Ti ⊂ ∂M be a chosen bound-
ary torus. A slope α on Ti is called exceptional if M(α) is not hyperbolic.
Assuming M has either some other cusp or nonempty geodesic bound-
ary, α is exceptional if and only if M(α) contains an essential sphere,
disc, annulus, or torus. In these cases we say that α is respectively of
type S, D, A, or T . For X1, X2 ∈ {S,D,A, T}, we define a number
∆hyp(X1, X2) as the maximal distance of two slopes of type X1 and X2
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in a boundary torus of a hyperbolic manifold [9]. Wu pointed out [22]
that in most cases ∆hyp is considerably lower when considering only
large manifolds, i.e. manifolds with H2(M,∂M \ Ti) �= {0}. He thus
defined ∆large(X1, X2) as the maximal distance of two slopes of type
X1 and X2 in a boundary torus of a large hyperbolic manifold. Among
other inequalities, he proved that 1 � ∆large(D,A) � 2. Since every hy-
perbolic manifold M with χ(M) < 0 is large, Corollary 1.8 implies that
∆large(D,A) = 2. This result leaves ∆large(T, T ) as the only unknown
value for ∆hyp and ∆large, as shown in the following tables (which are
taken from [9] with the insertion of ∆large(D,A) = 2).

∆hyp S D A T

S 1 0 2 3

D 1 2 2

A 5 5

T 8

∆large S D A T

S 0 0 1 1

D 1 2 1

A 4 4

T 4–5

We now define ∆neg(X1, X2) as the maximal distance of two slopes
of type X1 and X2 in a boundary torus of some hyperbolic manifold M
with χ(M) < 0. Of course we have

∆neg(X1, X2) � ∆large(X1, X2).

Gordon and Wu proved in [10] that if two slopes of type A in a boundary
torus of M have distance greater than 3 then M is the complement of
some link in S3. Hence ∆neg(A,A) � 3. This estimate and Corollary 1.8
give the following results for ∆neg:

∆neg D A

D 1 2

A 3

More precisely, the values of ∆neg(X1, X2) for X1, X2 ∈ {D,A} are
realized by every manifold M ∈ Mg,k with k � 1, and by every hyper-
bolic manifold obtained from such an M by filling some (but not all)
boundary components.

Question 1.10. What is ∆neg(X1, X2) when X1 is S or T ?
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Figure 2: A tangle in a ball (left); a positive and a negative gluing of
tangles (right).

Knots giving Mg,1 Theorem 1.7 implies that the elements of Mg,1

are knot exteriors in Hg, and the knots can be exhibited explicitly, as
we now explain. Consider a ball B as in Figure 2-left with the tangle
τ ⊂ B as shown, the 12 ends of τ being arranged in four groups of three,
each group contained in a disc. Now take g−1 copies of (B, τ) and glue
together the 4(g − 1) discs, matching the ends of the τ ’s. Each gluing
should be of one of the two types suggested in Figure 2-right. A gluing
as in the top part of Figure 2-right will be called positive, one as in the
bottom part will be called negative. The result of the 2(g − 1) gluings
is a link in Hg, and one readily sees that if all the gluings are positive
then the link is parallel to ∂Hg. The following will be proved at the end
of Section 3:

Proposition 1.11. If a knot K in Hg is realized from g−1 copies
of (B, τ) with 2g − 3 positive gluings and one negative gluing then the
exterior of K belongs to Mg,1. Every manifold in Mg,1 arises like this.

2. Triangulations and hyperbolicity

In this section we discuss some basic properties of the manifolds in
Mg,k. We describe in Proposition 2.2 the properties of a triangulation of

a compact manifold M with ∂M = Σg �
(

k�
i=1

Ti

)
, showing in particular

that such a triangulation has at least g+k tetrahedra. This result proves
Proposition 1.1 and, together with hyperbolicity of the manifolds in
Mg,k, easily implies point (4) of Theorem 1.2. We then prove all other
points of Theorem 1.2, except point (6), which is deferred to Section 3.
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Namely, solving the hyperbolicity equations [5] we prove point (1), and
using the tilt formula [20, 19, 5] we establish point (2). Next, we use
Haken’s theory of normal surfaces to prove point (3), and we show
points (5) and (7) by direct arguments.

Triangulations Let N be a compact manifold with boundary and let
T be an ideal triangulation of N . We associate to T the graph ΓT whose
vertices are the components of ∂N and whose edges correspond to the
edges of T . Of course, if N is connected then ΓT is also connected.

Lemma 2.1. Let N be a connected compact manifold with boundary
and let T be an ideal triangulation of N . Then χ(ΓT ) � 0. If χ(ΓT ) = 0
then

ΓT =

and each tetrahedron of T has at least three vertices on the component
C of ∂N having multiple adjacencies in ΓT .

Proof. Each tetrahedron ∆ determines a subgraph Γ∆ of ΓT whose
vertices and edges correspond to the vertices and edges of ∆, where ∆
is considered as a subset of N .

Now suppose χ(ΓT ) � 0. Then χ(Γ∆) � 0 for every ∆ ∈ T , and
this implies that χ(Γ∆) is either ❣� � or ❣� . Therefore each ∆ ∈ T has
at least three vertices on the same component C of ∂N . Moreover ΓT
is the union of the Γ∆’s, so it is as required and the conclusion follows.

q.e.d.

The following result implies Proposition 1.1. The incidence number
of an edge in a triangulation is the number of tetrahedra incident to it
(with multiplicity).

Proposition 2.2. If M is connected and ∂M = Σg �
(

k�
i=1

Ti

)
then

any ideal triangulation T of M has at least g + k tetrahedra, and if it
has g + k the following hold:

• g � k.

• For any i = 1, . . . , k there are exactly two tetrahedra of T with 3
vertices on Σg and one on Ti; the remaining g−k tetrahedra have
all 4 vertices on Σg.



434 r. frigerio, b. martelli & c. petronio

• T has k+ 1 edges e0, . . . , ek such that e0 has both its endpoints on
Σg and incidence number 6g, while ei connects Σg to Ti and has
incidence number 6 for any i = 1, . . . , k.

Proof. If T has n tetrahedra, an Euler characteristic argument shows
that it has n−g+1 edges. Therefore χ(ΓT ) = 1+k−(n−g+1) = k+g−n.
Lemma 2.1 then implies that n � k + g, and that if n = k + g there
exists a component C of ∂M such that every tetrahedron has at least
3 vertices on C. Moreover T has k + 1 edges. Let y be the number of
tetrahedra of T having some (and then one) vertex on ∂M \ C.

We first claim that C = Σg. Note that T induces on ∂M \ C a
triangulation with k vertices and y triangles. If C �= Σg, we would have
2−2g = χ(∂M \C) = k−y/2, whence y+4 = 4g+2k = 2(g+k)+2g �
y + (g + k) + 2g and 4 � 3g + k. Since g � 2, this is a contradiction and
our claim is proved.

Having shown that C = Σg, we get 0 = χ(∂M \ C) = k − y/2, so
y = 2k. Therefore the triangulation of ∂M induced by T has exactly
one vertex and two triangles on each Ti. So for any i = 1, . . . , k two
tetrahedra of T have one vertex in Ti. These 2k tetrahedra are distinct,
so n = g + k � 2k, whence g � k. Moreover there is only one edge ei

of T incident to Ti, both tetrahedra incident to Ti are triply incident to
ei, and no other tetrahedron is incident to ei. So all ei’s have incidence
number 6, and the other edge e0 has incidence number 6(g+k)−6k = 6g,
because a tetrahedron has 6 edges. q.e.d.

We now turn to the proof of Theorem 1.2.

Geometric tetrahedra We prove here Theorem 1.2-(1). In order to
construct a hyperbolic structure on our manifold M ∈ Mg,k we realize
the tetrahedra of an ideal triangulation of M as special geometric blocks
in H3 and then we require that the structures match under the gluings.
To describe the blocks to be used we need some definitions.

A partially truncated tetrahedron is a pair (∆, I), where ∆ is a tetra-
hedron and I is a set of vertices of ∆, which are called ideal vertices. In
the sequel we will always refer to ∆ itself as a partially truncated tetra-
hedron, tacitly implying that I is also fixed. The topological realization
∆∗ of ∆ is obtained by removing from ∆ the ideal vertices and small
open stars of the non-ideal ones. We call lateral hexagon and trunca-
tion triangle the intersection of ∆∗ respectively with a face of ∆ and
with the link in ∆ of a non-ideal vertex. The edges of the truncation
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triangles, which also belong to the lateral hexagons, are called bound-
ary edges, and the other edges of ∆∗ are called internal edges. Note
that, if ∆ has ideal vertices, a lateral hexagon of ∆∗ may not quite be a
hexagon, because some of its (closed) boundary edges may be missing.
A geometric realization of ∆ is an embedding of ∆∗ in H3 such that
the truncation triangles are geodesic triangles, the lateral hexagons are
geodesic polygons with ideal vertices corresponding to missing edges,
and the truncation triangles and lateral hexagons lie at right angles to
each other. The classification of the geometric realizations of partially
truncated tetrahedra given in [5] implies the following facts:

• Let ∆ be a partially truncated tetrahedron with one ideal vertex
v0, and take α ∈ R with 0 < α < π/3. Then there exists, up
to isometry, exactly one geometric realization of ∆ with dihedral
angles π/3 along the internal edges emanating from v0, and angle
α along the other internal edges; this geometric partially truncated
tetrahedron will be denoted by ∆id

α (where “id” stands for “ideal”).

• Let ∆ be a partially truncated tetrahedron without ideal vertices
and take α ∈ R with 0 < α < π/3. Then there exists, up to isom-
etry, exactly one geometric realization of ∆ with all the dihedral
angles along the internal edges equal to α; this geometric trun-
cated tetrahedron will be denoted by ∆reg

α (where “reg” stands for
“regular”).

Consistency Let M be our manifold in Mg,k, and let T be an ideal
triangulation of M with g+k tetrahedra. We try to give M a hyperbolic
structure with geodesic boundary by realizing the tetrahedra of T as
copies of the geometric polyhedra just described. More precisely, we
know from Proposition 2.2 that T consists of 2k tetrahedra with one
vertex on the boundary tori and g − k tetrahedra with all the vertices
on Σg. So we fix α, β ∈ (0, π/3), we realize the tetrahedra incident to
the boundary tori of M as 2k copies of ∆id

α and the tetrahedra incident
only to Σg as g − k copies of ∆reg

β .
It was shown in [5] that the hyperbolic structure given on the tetra-

hedra of T extends to the whole of M if and only if all the match-
ing boundary edges have the same length and the total dihedral angle
around each internal edge is 2π. Suppose first that 1 � k � g − 1. In
this case the length condition translates into the equation f(α, β) = 0,
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where

f(α, β) =
cos2 α + 1/2

sin2 α
− cos2 β + cosβ

sin2 β
,

while, by Proposition 2.2, the total dihedral angle condition gives the
equation

6k · α + 6(g − k) · β = 2π.

Now let β(α) = π−3k·α
3(g−k) be the solution of this equation. Setting φ(α) =

f(α, β(α)) we easily get that lim
α→0

φ(α) = +∞, lim
α→π/3k

φ(α) = −∞.

Moreover, φ is strictly monotonic on (0, π/3k) so the length and total
angle equations have a unique solution (αg,k, βg,k) in (0, π/3)× (0, π/3).
This solution determines a hyperbolic structure with geodesic boundary
on M .

When k = 0 or k = g the situation is even simpler, and the scheme
just described easily extends. More precisely, when k = 0 only com-
pact geometric polyhedra arise, so the shape of the tetrahedra of T
is parametrized by β and the hyperbolicity condition is verified for
βg,0 = π/3g. On the other hand, when k = g every tetrahedron of T
has a vertex on a boundary torus, so the geometric realizations of T are
parametrized by α and the hyperbolicity condition gives αg,g = π/3g.

Completeness To check completeness of the hyperbolic structure just
described we have to determine the similarity structure it induces on the
boundary tori. By construction, each torus in ∂M is tiled by two equilat-
eral Euclidean triangles. This shows that the structures on the boundary
tori are indeed Euclidean, so the hyperbolic structure constructed in the
previous paragraph is complete, and corresponds by Mostow’s rigidity
theorem to the unique complete finite-volume hyperbolic structure with
geodesic boundary on the topological manifold M with the boundary

tori removed. The volume of M is 2k·Vol
(

∆id
αg,k

)
+(g−k)·Vol

(
∆reg

βg,k

)
,

which depends on g and k only. We have eventually proved Theorem 1.2-
(1).

Canonical decomposition We now establish Theorem 1.2-(2). Ko-
jima proved in [12] that a complete finite-volume hyperbolic manifold
M with nonempty geodesic boundary admits a canonical decomposi-
tion into partially truncated polyhedra (an obvious generalization of
a partially truncated tetrahedron). This decomposition is obtained by
projecting first to H3 and then to M the faces of the convex hull of a
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certain family P of points in Minkowsky 4-space. This family P splits as
P ′ �P ′′, with P ′ consisting of the points on the hyperboloid ‖x‖2 = +1
which are dual to the hyperplanes giving ∂M̃ , where M̃ ⊂ H3 is a uni-
versal cover of M . The points in P ′′ lie on the light-cone, and they
are the duals of horoballs projecting in M to Margulis neighbourhoods
of the cusps. The choice of these Margulis neighbourhoods is some-
what tricky, and carefully explained in [5]. It will be sufficient for our
present purposes to know that any choice of sufficiently small Margulis
neighbourhoods leads to a set P ′′ which works. Note in particular that,
when there is more than one cusp, the Margulis neighbourhoods need
not have the same volume, as required for instance for the canonical
Epstein-Penner decomposition [6]. In the sequel we will denote by O
the union of sufficiently small Margulis neighbourhoods of the cusps.

Tilts Suppose a geometric triangulation T of M is given. The matter
of deciding if T is the canonical Kojima decomposition of M is faced
using the tilt formula [20, 19, 5], that we now briefly describe.

Let σ be a d-simplex in T and σ̃ be a lifting of σ to M̃ ⊂ H3. To
each end of σ̃ there corresponds (depending on the nature of the end)
one horoball in the lifting of O or one hyperbolic plane in the boundary
of M̃ , so σ̃ determines d + 1 points of P. Now let two tetrahedra ∆1

and ∆2 share a 2-face F , and let ∆̃1, ∆̃2 and F̃ be liftings of ∆1,∆2

and F to M̃ ⊂ H3 such that ∆̃1 ∩ ∆̃2 = F̃ . Let F be the 2-subspace
in Minkowsky 4-space that contains the three points of P determined
by F̃ . For i = 1, 2 let ∆(F )

i be the half-3-subspace bounded by F and
containing the fourth point of P determined by ∆̃i. Then one can show
that T is canonical if and only if, whatever F,∆1,∆2, the following
holds:

• The half-3-subspaces ∆(F )
1 and ∆(F )

2 lie on distinct 3-subspaces
and their convex hull does not contain the origin of Minkowsky
4-space.

The tilt formula computes a real number t(∆, F ) describing the “slope”
of ∆(F ). More precisely, one can translate the condition just stated into
the inequality

t(∆1, F ) + t(∆2, F ) < 0.

Coming to the manifolds we are interested in, let M ∈ Mg,k, let T be
a geometric triangulation of M by g + k partially truncated tetrahedra
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as described above and let O be a suitable neighbourhood of the cusps
of M . It was shown in [5] that O determines a real number r∆(v) > 0
for any ideal vertex v of any tetrahedron ∆ in T . This number r∆(v)
represents the “height” of the trace in ∆ near v of ∂O (except that
r∆(v) � 1 means that ∂O is “very” high).

Recall now that in T all the tetrahedra having vertices in the cusps
have only one such vertex and are isometric to each other. It follows
that we can choose O so that r∆(v) has a certain value r whenever v is
an ideal vertex of some ∆ in T . Using the formulae given in [5] we can
now easily compute the tilts of the geometric blocks of T .

• Let v0 be the ideal vertex of ∆id
α and let r = r(v0) be the parameter

associated to the intersection of ∆id
α with O. If F0 is the face of

∆id
α opposite to v0 and F1 is any other face of ∆id

α , then

t(∆id
α , F0) = r/(2 cosα) −

√
4 cos2 α− 1,

t(∆id
α , F1) = −r/2.

• If F is any face of ∆reg
β , then

t(∆reg
β , F ) = −

√
(3 cosβ − 1)(2 cosβ − 1)

cosβ + 1
.

If r is small enough, we then get t(∆1, F1) + t(∆2, F2) < 0 for any pair
(F1, F2) of matching faces of T , and this suffices to prove that T is
the Kojima canonical decomposition of M . Therefore there is only one
triangulation of M with g+k tetrahedra. We have proved Theorem 1.2-
(2).

Normal surfaces We now prove Theorem 1.2-(3) using Haken’s the-
ory of normal surfaces [14]. Let T be the ideal triangulation of M with
g + k vertices. Suppose S ⊂ M is a properly embedded incompress-
ible and ∂-incompressible surface not intersecting Σg. Then S can be
isotoped into normal position with respect to T (by hyperbolicity, S
cannot be a sphere or a disc, and M is irreducible). The surface S in-
tersects each tetrahedron having 4 truncation triangles in Σg in internal
triangles and squares, and it intersects each tetrahedron with 1 trunca-
tion triangle in some boundary torus Ti in internal triangles, squares,
and squares having one edge in Ti as in Figure 3-(1). We prove that
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Figure 3: Types of intersection between a normal surface and a tetra-
hedron.

only internal triangles are permitted, which implies that S is boundary-
parallel, hence not essential.

Let us first consider a tetrahedron ∆ with one truncation triangle
in some Ti. Suppose first there are q1 > 0 internal squares. One type
of square intersecting Ti can also be present, as shown in Figure 3-(2).
Let q2 be the number of parallel copies of such squares. We enumerate
the three truncation triangles of ∆ not on Ti by 1, 2, and 3 and we
denote by tj the number of triangles in S ∩ ∆ that are parallel to the
j-th truncation triangle. The three base edges connecting vertices 1,2,
and 3 are glued together, therefore we have

t1 + t2 = t2 + q2 + q1 + t3 = t1 + q2 + q1 + t3

which implies that t1 = t2 = q1 + q2 + t3. The three other edges are also
glued together, whence t1 + q1 = t3, a contradiction. This shows that
there are no internal squares. Then S can contain three types of squares
intersecting Ti, as shown in Figure 3-(3), and we denote by q1, q2, and
q3 the number of parallel copies of each type. As above, we have two
equations, namely

t1 + t2 + q1 + q2 = t2 + t3 + q2 + q3 = t3 + t1 + q3 + q1,

t1 = t2 = t3,

giving q1 = q2 = q3. Then ∂S ∩ Ti consists of q1 copies of the trivial
loop, as in Figure 3-(4): a contradiction, since S is incompressible.

The case where ∆ has all truncation triangles in Σg is easier: only
triangles and squares are allowed, and all six edges of ∆ are glued to-
gether. Writing equations as above we get that there is no square.
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Matveev complexity and Heegaard genus Theorem 1.2-(4), which
states that c(M) = g + k for M ∈ Mg,k, is now an easy consequence of
Proposition 1.1 together with the fact [14] that, because of hyperbolicity,
c(M) equals the minimal number of tetrahedra in an ideal triangulation
of M .

The genus of
(
M,Σg,

k�
i=1

Ti

)
is of course at least g, and it is actually

at most g + 1 because, if e is the only edge of the minimal triangulation
of M having both ends in Σg, the boundary of a regular neighborhood of
Σg ∪ e is easily seen to be a Heegaard surface. The next result, together
with the fact that Hg,k is not hyperbolic, shows that the genus is indeed
g + 1.

Lemma 2.3. If M is compact with ∂M = Σg �
(

k�
i=1

Ti

)
and(

M,Σg,
k�

i=1
Ti

)
has genus g then M = Hg,k.

Proof. M is obtained by attaching 1-handles to
(

k�
i=1

Ti

)
× [0, 1]

along
(

k�
i=1

Ti

)
×{1} until a boundary component Σg is created. Viewing

Ti × [0, 1] as the collar of the boundary of a solid torus, we see that M
can also be described as follows:

• Attach 1-handles to a disjoint union of k solid tori until a con-
nected manifold with one boundary component Σg is created.

• Drill the cores of the original k solid tori.

At the end of the first step we obviously have Hg, so we have Hg,k at
the end of the second step. q.e.d.

Turaev-Viro invariants We conclude this section proving Theo-
rem 1.2-(7). As pointed out in [15], Turaev-Viro invariants depend only
on incidence numbers between edges and tetrahedra in a triangulation.
In our context, let us consider the minimal triangulation T of some M
in Mg,k. If we assign the colour 0 to the edge having both endpoints in
Σg, and colours {1, . . . , k} to the other edges, then the 6 edges of each
of the g + k tetrahedra in T are coloured. It is clear that this set of
g + k coloured tetrahedra is the same for each M ∈ Mg,k. This implies
that all such M ’s have the same Turaev-Viro invariants.
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Figure 4: From an ideal triangulation to a standard spine.

3. Spines and Dehn filling

We prove here Theorem 1.2-(6), Theorem 1.7, Proposition 1.9 and
Proposition 1.11. To do this, we switch from the viewpoint of ideal
triangulations to the dual viewpoint of standard spines, suggested in
Figure 4. Recall that a spine of a manifold is a subpolyhedron onto
which the manifold collapses. A polyhedron is standard if it is locally
homeomorphic to that of Figure 4-right and its natural stratification
consists of 0-, 1-, and 2-cells. We will be tacitly using in the sequel
some of Matveev’s theory of spines [14], but we actually will not need
to cite any precise result: we will try to reconstruct all we need in an
elementary and self-contained way.

Let us then fix M ∈ Mg,k and the spine P dual to the triangulation
of M with g + k tetrahedra. Note that P has a cellularization into
vertices, edges, and faces corresponding to tetrahedra, faces, and edges
of the triangulation. We denote in particular by S(P ) the 1-skeleton
of P (a 4-valent graph). By Proposition 2.2 the spine P contains k
(open) hexagonal faces F1, . . . , Fk and one big face G with 6g vertices
(with multiplicity). For i = 1, . . . , k the closure Fi of Fi is a torus which
bounds a collar of the i-th toric component Ti of ∂M , and the rest of P
lies outside this collar.

Homology We prove Theorem 1.2-(6). The case k = 0 was dealt
with in [3], so we suppose k > 0. Since M collapses onto P , we have
H1(M ; Z) ∼= H1(P ; Z), and we can use cellular homology to compute
H1(P ; Z). Since Fi intersects S(P ) in a θ-shaped graph, there is a max-
imal tree Y in the 4-valent graph S(P ) intersecting each Fi in an edge.
Then S(P ) \ Y consists of g + k + 1 edges e1, . . . , eg+k+1, where e2i−1
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and e2i are contained in Fi for i = 1, . . . , k, while e2k+1, . . . , eg+k+1

are contained in G. Choosing an orientation on each ej , Fi, and G,
we get a presentation for H1(P ) with generators e1, . . . , eg+k+1 and re-
lators given by the incidence numbers of G and the Fi’s on the ej ’s.
Each Fi contributes with the trivial relator e2i−1 + e2i − e2i−1 − e2i,
while G contributes with a big relator w containing e1 once. Therefore
H1(P ; Z) = Zg+k+1/〈w〉 ∼= Zg+k.

Dehn fillings We prove here Theorem 1.7, starting from the case
h = 1 (the general case will easily follow). Let then α be a slope on
the boundary torus T1 corresponding to F1. It is easy to construct a
spine P (α) for M(α): the complement of P ⊂ M ⊂ M(α) inside M(α)
consists of the disjoint union of Σg × [0, 1), k − 1 copies of Σ1 × [0, 1),
and one open solid torus. Take a meridinal disc D of this solid torus.
The complement of P ∪D is as above, with an open ball instead of the
open solid torus. The loop ∂D ⊂ F1 cuts F1 into some open faces of
P ∪D (see two examples in Figure 5 below). Each such face separates
Σg × [0, 1) from the open ball, so, if we remove the face, we get a spine
P (α) of M(α).

The θ-shaped graph S(P ) ∩ F1 contains three loops, representing
three slopes with pairwise intersection one, having coordinates 0, 1, and
∞ with respect to an appropriate basis of H1(T ; Z). Let us consider the
case α is 0, 1, or ∞. In the construction sketched above of a spine of
M(α), we can ask ∂D to lie inside the θ-shaped graph S(P ) ∩ F1. The
face F1 then survives in P ∪ D, hence P (α) = (P ∪ D) \ F1 is a spine
of M(α). Now P (α) has an induced stratification with 1-dimensional
stratum S(P ), and 2-dimensional stratum consisting of the k − 1 faces
F2, . . . , Fk, the face G and the disc D. Note now that there is one edge
of P (α), namely the edge of S(P ) ∩ F1 not contained in ∂D, which
was previously adjacent twice to F1 and once to G, which is now only
adjacent once to G. Therefore P (α) can be collapsed starting from this
edge, and in this collapse the 2-dimensional strata G and D disappear.
The resulting polyhedron is still a spine of M(α), and is made of k − 1
tori F2, . . . , Fk and some 1-dimensional strata, i.e. a graph connecting
these tori. An orientable manifold having such a spine is necessarily
a boundary connected sum of a handlebody and some Σ1 × I. Since
∂M(α) consists of one Σg and k − 1 tori, we have M(α) = Hg,k−1, as
required.

We consider now the case α ∈ {−1, 1/2, 2}. The slope α is repre-
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Figure 5: A slope in {−1, 1/2, 1} (left) or in {−2,−1/2, 1/3, 2/3, 3/2, 3}
(right) is represented by a loop ∂D intersecting transversely S(P ) ∩ F1

in two (left) or three (right) points.

sented by a loop ∂D which intersects transversely the graph S(P ) ∩ F1

in two points, as in Figure 5-left. Consider the (open) face J1 ⊂ F1

shown in Figure 5-left. The spine P (α) = (P ∪ D) \ J1 of M(α) has
an induced stratification with S(P )∪ ∂D as 1-dimensional stratum and
the faces F2, . . . , Fk, G, J2, J3, and D as 2-dimensional strata. However
this is not the intrinsic stratification of P (α), because each of the four
edges that were adjacent to J1 is now adjacent to a pair of faces only,
so the four edges and the faces incident to them can be merged into a
single 2-dimensional stratum S. The pairs of faces incident to the edges
of J1 are {J3, G}, {J2, G}, {J3, G}, and {J3, D}, therefore S is either
an annulus or a Möbius strip. Let us consider its core γ. Taking the
pre-image of γ under the projection from M(α) to P (α) we get an an-
nulus or Möbius strip R properly embedded in M(α) with ∂R ⊂ Σg and
intersecting P (α) in γ. Moreover, cutting M(α) and P (α) along R and
γ respectively, we get a manifold M ′ and a spine of M ′ which retracts
onto P (α) \S. This polyhedron is easily seen to be connected, so M ′ is
connected, i.e., R is non-separating. In addition, P (α)\S consists of the
tori F2, . . . , Fk and some graph connecting them, which implies as above
that M ′ = Hg,k−1. Consider now the manifold D(M(α)) obtained by
mirroring M(α) in Σg, and note that it is hyperbolic if M(α) is. Now
R gives a closed non-separating surface D(R) in D(M(α)), and D(R) is
homeomorphic either to the torus or to the Klein bottle. Such a surface
cannot exist in a hyperbolic manifold, so M(α) is not hyperbolic.

If α is none of the slopes studied above, then by Thurston’s ge-
ometrization theorem either M(α) is hyperbolic or it contains an es-
sential surface of nonnegative Euler characteristic. Theorem 1.2-(3),
now proved, implies that M(α) does not contain any closed essential
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surface. To conclude we now refer to the bounds on ∆large stated in
Section 1. The fact that the slopes 0, 1,∞ are of type D and the bound
∆large(D,D) � 1 imply that α cannot be of type D. The same fact
and the bound ∆large(D,A) � 2 imply that α cannot be of type A, and
hyperbolicity of M(α) follows. Moreover M(α) has genus g+1 , because
the genus-(g + 1) Heegaard surface of M is a Heegaard surface also for
M(α), and M(α) cannot have genus g by Lemma 2.3.

Finally, suppose α ∈ {−2,−1/2, 1/3, 2/3, 3/2, 3}. The slope α is
represented by a loop ∂D intersecting transversely the graph S(P )∩F1 in
three points, as in Figure 5-right. As above, we take P (α) = (P∪D)\J1.
The edges that were adjacent to J1 are now adjacent to the four pairs
of faces {J3, G}, {J2, G}, {J4, G}, and {J4, D}. We can therefore as
above take a stratification with a 4-valent graph as 1-stratum and discs
F2, . . . , Fk, D

′ as 2-strata, where D′ is the disc obtained by merging J2,
J3, J4, G, and the four edges of J1. Now P (α) is standard, so it can be
dualized to an ideal triangulation of M(α) with k edges and g + k − 1
tetrahedra. Therefore M(α) ∈ Mg,k−1, as required.

The case h > 1 follows from the case h = 1, using the fact that
Hg,k(α) = Hg,k−1 for all slopes α, and repeating the same argument
above to prove that if αi �∈ {−1, 0, 1/2, 1, 2,∞} for all i then the filled
manifold is hyperbolic. The last assertion of Theorem 1.7 is a direct
consequence of Theorem 1.2-(3), so the proof of 1.7 is now complete.

Remark 3.1. The construction used in the proof of Theorem 1.7
to pass from P to P (α) can actually be generalized [13] to any slope α.
The idea is to note that P \F1 has a natural θ-shaped “boundary,” and
to take a spine Qα of the filling solid torus H1 so that Qα also has a
θ-shaped “boundary” on ∂H1, and the gluing of ∂H1 to T1 (determined
by α) matches ∂Qα to ∂(P \ F1). If α ∈ {0, 1,∞} the polyhedron Qα

is a meridinal disc with a longitudinal arc in ∂H1, as in Figure 6-(1).
If α ∈ {−1, 1/2, 2} the polyhedron Qα is the Möbius triplet shown in
Figure 6-(2). If α �∈ {−1, 0, 1/2, 1, 2,∞}, one has to change the θ-shaped
boundary of the Möbius triplet via some flips (see Figure 6-(3,4)), each
flip adding a vertex to Qα as in Figure 6-(5).

The construction of P (α) as Qα ∪ (P \F1) is “efficient,” in the sense
that if P has a minimal number of vertices, then P (α) very often does.
This construction is actually dual to adding a layered solid torus to a
triangulation, but it is important to notice that spines often display
greater flexibility than triangulations. For instance, the construction
of P (α) described in the proof when α ∈ {0, 1,∞} has no analogue
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Figure 6: Two spines of the solid torus (1,2) and a flip (3,4) realized by
adding a vertex (5).

for triangulations, is usually efficient, and always produces a spine with
strictly fewer vertices than P . This is coherent with the fact that the
slopes α ∈ {0, 1,∞} are often exceptional, so they give a manifold M(α)
which is simpler than M . Other natural properties of spines that trian-
gulations do not have are shown in [14].

1-bridge knots We now turn to Proposition 1.9. A knot K in a
manifold M is 1-bridge if it can be isotoped to the form γ0 ∪ γ1 where
the γi’s are simple arcs with common ends, γ0 lies on ∂M , and γ1 is
properly embedded and parallel to ∂M [8].

To prove Proposition 1.9, let N be the exterior of a knot K contained
in the interior of Hg, and assume N is hyperbolic and homeomorphic
to some M(α1, . . . , αk−1) for M ∈ Mg,k. Let P be the spine of M
dual to the triangulation with g + k tetrahedra. Since P is contained
in M(α1, . . . , αk−1) we can view P as as subset of Hg. Recall now that
P contains k disjoint hexagonal faces, whose closures are tori, and one
big face G. Let F1 be the hexagonal face parallel to the only torus
in ∂N : the torus F1 has K on one side and the whole of P on the
other side. The graph S(P ) ∩ F1 has the shape of a θ, so it contains
three slopes. Filling along any of these slopes we get Hg, so the bound
∆large(D,D) � 1 implies, as in the above proof of Theorem 1.7, that
the meridian of K must be one of the slopes contained in θ.

Let us now take in F 1 two loops s and s′ so that s′ is isotopic to the
meridian of K and s is isotopic to a different slope contained in θ. We
also arrange so that s and s′ intersect each other and θ transversely in a
single point, as in Figure 7-(1). The points p = s∩θ and p′ = s′∩θ lie in
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Figure 7: Isotoping a knot to 1-bridge position.

the boundary of the big face G, so there is an arc r properly embedded
in G connecting them, also shown in Figure 7-(1). The inverse image
of the graph s ∪ r ∪ s′ under the retraction of M onto P is a set S as
in Figure 7-(2), where a half-twist of the strip may or not be present
along the zig-zagged segment. In either case, one easily sees that S is
a properly immersed pair of pants with ∂S = s ∪ s′ ∪ u, where u is an
immersed loop in Σg with one self-intersection. Since s′ is a meridian of
K, the surface S appears in the exterior of K in Hg as in Figure 7-(3).
In part (4) of the same figure we suggest how to isotope K to a knot
K ′ in 1-bridge position.

Knots giving Mg,1 We prove here Proposition 1.11. Let K be a knot
in Hg constructed with one negative gluing. We prove that the exterior
of K in Hg lies in Mg,1 by constructing for it a standard spine with
g + 1 vertices. Later we will prove that the unique minimal spine of
each manifold in Mg,1 is the result of one such construction, for some
K. A spine of the exterior of K is constructed by taking a portion as
shown in Figure 8-left for each of the g − 1 tangles. These portions
can be attached (with some torsion) at each positive gluing, while the
piece shown in Figure 8-right must be inserted at the single negative
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Figure 8: Portions of spine of the knot exterior.

gluing. The resulting polyhedron is a standard spine of the exterior of
K and has (g − 1) + 2 vertices, as required. Standardness comes from
the fact that K is a knot, rather than a link, and from the presence of
one portion as in Figure 8-right.

Now let M be a manifold in Mg,1 and let P be the spine dual to the
triangulation of M with g + 1 tetrahedra. The spine P has one open
hexagonal face F1 (whose closure is a torus) and one big open face G
with 6g vertices. The graph F1 ∩ S(P ) has the shape of a θ, and we
denote it by θ. We choose one of its edges, say e, and distinct points
w1, . . . , w6g−3 in the interior of e. We denote by e1, . . . , e2g−1 the edges
of S(P ) not contained in θ, and choose an inner point vi in each ei.
As an abstract face, G is a 6g-gon with one edge ẽ incident to e, two
other edges incident to θ, and 6g − 3 more edges, divided into groups
of three incident to the same ei. Let w̃k be the point of ẽ incident to
wk, and ṽ

(1)
i , ṽ

(2)
i , ṽ

(3)
i be the points on ∂G incident to vi. Now choose

6g− 3 pairwise disjoint arcs in G each having one w̃k and one ṽ
(j)
i as its

ends. The image in P of the union of these arcs is a disjoint union of
2g− 1 graphs, each having the shape of a Y with all three endpoints on
e. Choose now 6g−3 parallel circles in the torus F1, each intersecting θ
in one of the wk’s. Attach these circles to the Y -shaped graphs, getting
2g− 1 graphs with shape . It is now not difficult to see that, cutting
along these graphs, one gets g− 1 polyhedra as in Figure 8-left and one
polyhedron as in Figure 8-right. (The special portion is the one which
contains the two edges of θ other than e). From this decomposition
one readily sees that P arises as explained above for some knot in Hg

constructed with one negative gluing, so M is the exterior of this knot.
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4. Growth estimates

This section is devoted to the proof of Proposition 1.4 and Theo-
rem 1.5. Estimates of the form #Mg,0 � a · bg were already obtained
in [3]. We first improve this result, and then we extend it to Mg,k for
any fixed k.

Theorem 4.1. The sequence
(
#Mg,0

)∞
g=2

has growth type gg.

Recall that M ∈ Mg,0 if and only if it is orientable and admits a 1-
edged ideal triangulation with g tetrahedra, and that this triangulation
is unique. To prove Theorem 4.1 we introduce the set Gn of homeo-
morphism classes of connected 4-valent graphs with n vertices, and we
denote by G′

n the graphs in Gn arising as dual skeleta of one-edged tri-
angulations of orientable manifolds, so that #Mn,0 � #G′

n. And we
prove the following:

Proposition 4.2. The sequence
(
#Gn

)∞
n=1

has growth type nn.

Proposition 4.3. For all n there exists a map φn : Gn−1 → G′
n

such that φn(G) is obtained by adding a curl at some internal point of
an edge of G.

Assuming these results the proof of Theorem 4.1 is now easy. Note
that if G ∈ Gn then G contains at most n curls. So #(φ−1

n (G)) � n
for G ∈ G′

n. In particular #G′
n � 1

n · #Gn−1, and the conclusion readily
follows from Proposition 4.2 and the next easy:

Remark 4.4. There are at most 18n distinct orientable triangu-
lations with a given dual 1-skeleton.

Proof of 4.2. This result is purely graph-theoretical, and its proof
is not hard. Let us imagine a 4-valent graph with n vertices as being
constructed from the disjoint union of n crosses � by joining together
in pairs the 4n free germs of edges. If we fix an ordering on these 4n
germs, there are 4n − 1 choices for the germ to be joined to the first
germ, then 4n−3 for the next free germ, and so on, whence (4n−1)!! in
all. This is however too rough a counting, because disconnected graphs
may arise. But the final graph is disconnected if and only if at some
point along the construction process a subgraph without free germs of
edges is created. Assume this happens at time i. For the final edge
of the saturated subgraph there is only one choice, so all other 4n− 2i
choices do not create saturated subgraphs. This easily implies that at
least (4n−2)!! different construction patterns lead to connected graphs.
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We must now consider that different construction patterns can lead
to homeomorphic graphs. Since there are n vertices of valence 4, one
readily sees that at most (4!)n ·n! different patterns can lead to the same
graph. This implies that

(4n− 1)!! � #Gn � (4n− 2)!!
(4!)n · n!

.

Now the easy inequalities
√

(k + 1)! � k!! �
√
k! and Stirling’s formula

imply that (√
8πn

(
4n
e

)4n

e1/48n
)1/2

� #Gn

�

(√
2π(4n− 2)

(
(4n− 2)/e

)4n−2
)1/2

(4!)n
√

2πn(n/e)ne1/12n

and the conclusion readily follows. q.e.d.

To establish Proposition 4.3 we begin with the following:

Lemma 4.5. For all G ∈ Gn there exists an orientable ideal trian-
gulation with dual graph G and at most two edges.

Proof. We adopt the dual viewpoint of orientable standard spines,
so we assume P is a spine such that S(P ) = G and the number m of
faces of P is the minimal possible one, and we show that m � 2.

Recall now that P is determined by a regular neighbourhood
U(S(P )) of the singular set S(P ), because ∂U(S(P )) consists of the
attaching circles of the faces of P . Moreover, as in [1], one can represent
P in the plane by drawing ∂U(S(P )) only. To establish the conclusion
we first prove three claims, each showing that if P has “too many” faces
then a new P with fewer faces and the same S(P ) can be constructed,
which contradicts minimality.

Claim 1: if e is an edge of S(P ), the three faces of P running along
e cannot be distinct from each other. This is shown in Figure 9.

Claim 2: if two faces run along an edge, the face running twice
cannot run in opposite directions, as proved in Figure 10.

Claim 3: no face can run twice along two edges with different com-
panions. This is proved in Figure 11 (note that Claim 2 is used to draw
the picture).
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Figure 9: Left: if three different faces of P run along the edge e shown
in the dotted box, their attaching circles in the rest of ∂U(S(P )) are
connected as shown. Right: this modification of U(P ) near e reduces
the number of faces.

Figure 10: If a face passes twice with a counterpass, the number of faces
can be reduced.

Figure 11: If a face passes twice along two edges with different compan-
ions, the number of faces can be reduced.
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Figure 12: Conclusion of the proof.

We can now conclude. Supposing P has at least three faces, it is easy
to see that there is a simple path e1 · · · ek of edges of S(P ) such that the
total number of faces touching e1 ∪ ek is at least three. Now suppose k
is minimal, let e1 be touched by faces XXY (claim 1 is used here) and
ek be touched by some Z �= X,Y . We suppose k � 3, leaving the easier
case k = 2 as an exercise to the reader. Minimality of k and Claim 3
imply that e2 is touched either by XXX or by Y Y Y , and actually that
the same face X or Y must be triply incident to all e2, . . . , ek−1. Claim 3
now implies that one of the following must happen:

1. e1 = XXY , e2 = · · · = ek−1 = XXX, ek = XZZ;

2. e1 = XXY , e2 = · · · = ek−1 = Y Y Y , ek = Y Y Z;

3. e1 = XXY , e2 = · · · = ek−1 = Y Y Y , ek = Y ZZ.

Cases (1) and (2) are symmetric, so we treat (2). By Claim 2, at the end
of e1, the situation is as in Figure 12-left. Since ek is touched by Y Y Z,
Claim 3 shows that the missing label must be X, but then Claim 2
would be violated: a contradiction. Case (3) is similar. At the end of e1
we still have the pattern of Figure 12-left, and Claim 2 shows that the
missing label must be Y . Now the beginning of ek is as in Figure 12-
right, so the missing label again must be Y . Then we would have edges
XY Y and ZY Y , violating Claim 3. q.e.d.

Proof of 4.3. The definition of φ(G) is different depending on whether
G belongs to G′

n−1 or not. If G �∈ G′
n−1 we consider an orientable stan-

dard spine P based on G and having two faces. The previous proof
implies that there is an edge of G along which a face of P passes twice
in the same direction. Then we build a new P as in Figure 13, and call
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Figure 13: Left: attaching circles of faces outside an edge where a face
passes twice. Right: a spine with one face and one more vertex.

φn(G) its singular set. If G ∈ G′
n−1 we choose P with one face. Looking

at any vertex we see that there must be an edge along which the face
runs twice in one direction and once in the opposite direction. Then we
define φn(G) as in Figure 14. q.e.d.

Proof of 1.4 and 1.5. We have already proved in Proposition 2.2
that Mg,k is empty whenever g < k. We also know that if P is a spine
with g + k vertices of some M ∈ Mg,k then up to isotopy P contains
the boundary tori T1, . . . , Tk, and a neighbourhood in P of Ti is as in
Figure 15-left.

Therefore if g = k then S(P ) must be as in Figure 15-right. This
implies that Mg,g is nonempty if and only if there exists a spine P of
an orientable manifold having S(P ) as in Figure 15-right and a total of
g + 1 faces with g of them as in Figure 15-left. Using the techniques
of [1] it is now easy to see that such a P exists if and only if g is even.

We now turn to the case g > k. It was proved in [3] that Mg,0 is
nonempty for all g � 2, and in [4] that M2,1 is also nonempty. We
will now construct for g > k a function ψ : Mg,k → Mg+1,k+1, whose
existence then implies that Mg,k is nonempty for all g > k. We will
also prove that #ψ−1(M) � 3g for all M , which, using Theorem 4.1,
proves that for fixed k the growth type of

(
#Mg,k

)∞
g=k

is gg.
Let us then construct ψ. Let M ∈ Mg,k and let P be its spine

with g + k vertices. Since g > k, there is one vertex v of P which does
not belong to the closure of any hexagonal face, so it is adjacent to the
big face G only. Among the 4 edges incident to v there is certainly
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Figure 14: Left: attaching circle of the face outside an edge where it
passes three times but not in the same direction. Right: a spine with
one face and one more vertex.

Figure 15: Spines of elements of Mg,g.

Figure 16: How to transform a spine of M ∈ Mg,k to a spine of M ′ ∈
Mg+1,k+1.
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one edge along which G runs twice in one direction and once in the
opposite one, as in Figure 16-left. With the move shown in Figure 16
we get a polyhedron P ′ with one big face, g + 1 hexagons and g + k + 2
vertices. Such a polyhedron is then a spine of a manifold M ′ = ψ(M) ∈
Mg+1,k+1. To show that #ψ−1(M ′) � 3g we recall that M ′ has a unique
minimal spine P ′ and note that there are k + 1 � g θ-shaped portions
of P ′ that we can delete and, after deletion, we have at most 3 ways to
connect what is left. q.e.d.
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